Every morning at about 8 a.m. Anthony Levandowski walks out of his house in Berkeley and folds his six-foot-six-inch frame into the driver's seat of his white Lexus. Levandowski is embarking on his daily commute to work. It's the most ordinary familiar moment there is. Most of us perform this ritual five times a week 50 weeks out of the year. Levandowski's commute however is decidedly different. He's got a chauffeur and it's a robot.Levandowski backs out of his suburban driveway in the usual manner. By the time he points his car down the street it has used its GPS and other sensors to determine its location in the world. On the dashboard right in front of the windshield is a low-profile heads-up display. manual it reads in sober sans serif font white on black. But the moment Levandowski enters the freeway ramp near his house a colorful graphic appears. It's a schematic view of the road: two solid white vertical lines marking the boundaries of the highway and three dashed lines dividing it into four lanes. The message now reads go to autodrive lane; there are two on the far side of the freeway shown in green on the schematic. Levandowski's car and those around him are represented by little white squares. The graphics are reminiscent of Pong. But the game play? Pure Frogger.There are two buttons on Levandowski's steering wheel off and on and after merging into an auto-drive lane he hits on with his thumb. A dulcet female voice marks the moment by enunciating the words auto driving with textbook precision. And with that Levandowski has handed off control of his vehicle to software named Google Chauffeur. He takes his feet off the pedals and puts his hands in his lap. The car's computer is now driving him to work. Self-driving cars have been around in one form or another since the 1970s but three DARPA Grand Challenges in 2004 2005 and 2007 jump-started the field. Grand Challenge alumni now populate self-driving laboratories worldwide. It's not just Google that's developing the technology but also most of the major car manufacturers: Audi Volkswagen Toyota GM Volvo BMW Nissan. Arguably the most important outcome of the DARPA field trials was the development of a robust and reliable laser range finder. It's the all-seeing eye mounted on top of Levandowski's car and it's used by virtually every other experimental self-driving system ever built.This year will mark another key milestone in self-driving technology. The National Highway Traffic Safety Administration (NHTSA) is widely expected to announce standards and mandates for car-borne beacons that will broadcast location information to other vehicles on the road. The beacons will warn drivers when a collision seems imminent when the car ahead breaks hard for example or another vehicle swerves erratically into traffic. Automakers may then use this information to take the next step: program automated responses.Automatic driving is a fundamentally different experience than driving myself. when I arrive at work I'm ready.Levandoswki's commute is 45 miles long and if Chauffeur were perfect he might use the time napping in the backseat. In reality Levandowski has to stay awake and behind the wheel because when Chauffeur encounters a situation in which it's slightly unsure of itself it asks him to retake control. Following Google policy Levandowski drives through residential roads and surface streets himself while Chauffeur drives the freeways. Still it's a lot better than driving the whole way. Levandowski has his hands on the wheel for just 14 minutes of his hour-long commute: at the very beginning at the very end and during the tricky freeway interchanges on the San Mateo Bridge. The rest of the time he can relax. Automatic driving is a fundamentally different experience than driving myself he told automotive engineers attending the 2012 SAE International conference. When I arrive at work I'm ready. I'm just fresh.Levandowski works at Google's headquarters in Mountain View California. He's the business lead of Google's self-driving-car project an initiative that the company has been developing for the better part of a decade. Google has a small fleet of driverless cars now plying public roads. They are test vehicles but they are also simply doing their job: ferrying Google employees back and forth from work. Commuters in Silicon Valley report seeing one of the cars easily identifiable by a spinning turret mounted on the roof an average of once an hour. Google itself reports that collectively the cars have driven more than 500000 miles without crashing. At a ceremony at Google headquarters last year where Governor Jerry Brown signed California's self-driving-car bill into law Google co-founder Sergey Brin said you can count on one hand the number of years until ordinary people can experience this. In other words a self-driving car will be parked on a street near you by 2018. Yet releasing a car will require more than a website and a click here to download button. For Chauffeur to make it to your driveway it will have to run a gauntlet: Chauffeur must navigate a path through a skeptical Detroit a litigious society and a host of technical catch-22's.  Right now Chauffeur is undergoing what's known in Silicon Valley as a closed beta test. In the language particular to Google the researchers are dogfooding the car driving to work each morning in the same way that Levandowski does. It's not so much a perk as it is a product test. Google needs to put the car in the hands of ordinary drivers in order to test the user experience. The company also wants to prove in a statistical actuarial sense that the auto-drive function is safe: not perfect not crash-proof but safer than a competent human driver. We have a saying here at Google says Levandowski. In God we trust all others must bring data.Currently the data reveal that so-called release versions of Chauffeur will on average travel 36000 miles before making a mistake severe enough to require driver intervention. A mistake doesn't mean a crash it just means that Chauffeur misinterprets what it sees. For example it might mistake a parked truck for a small building or a mailbox for a child standing by the side of the road. It's scary but it's not the same thing as an accident.The software also performs hundreds of diagnostic checks a second. Glitches occur about every 300 miles. This spring Chris Urmson the director of Google's self-driving-car project told a government audience in Washington D.C. that the vast majority of those are nothing to worry about. We've set the bar incredibly low he says. For the errors worrisome enough to require human hands back on the wheel Google's crew of young testers have been trained in extreme driving techniques including emergency braking high-speed lane changes and preventing and maneuvering through uncontrolled slides just in case.So far Chauffeur has a clean driving record. There has been only one reported accident that can conceivably be blamed on Google. A self-driving car near Google's headquarters rear-ended another Prius with enough force to push it forward and impact another two cars falling-dominoes style. The incident took place two years ago the Stone Age in the foreshortened timelines of software development and according to Google spokespeople the car was not in self-driving mode at the time so the accident wasn't Chauffeur's fault. It was due to ordinary human error.Human drivers get into an accident of one sort or another an average of once every 500000 miles in the U.S. Accidents that cause injuries are even rarer occurring about once every 1.3 million miles. And a fatality? Every 90 million miles. Considering that the Google self-driving program has already clocked half a million miles the argument could be made that Google Chauffeur is already as safe as the average human driver. It's not an argument Google makes to the public because Levandowski says the system hasn't encountered enough challenging situations in its real-world commutes. We can speculate; we have models [but] we don't actually know the value of the technology to society he says yet.  Google has been uncommonly secretive about its self-driving-car program. Though it began in 2009 the company first announced the project in a blog post a year later. Detroit was not amused.The attack came from Chrysler the smallest of Detroit's Big Three automakers in the form of a television commercial for the new Dodge Charger. In the ad the Charger is traveling through a long gloomy tunnel the camera tracking with it. A baritone voice speaks: Hands-free driving cars that park themselves an unmanned car driven by a search-engine company. The voice-over is monotone lifeless ominous. We've seen that movie the voice intones. It ends with robots harvesting our bodies for energy.Google is still not saying much to reporters (including this one) about its plans but since it was accused of being the bad guy in a real-life Matrix the company has made a concerted effort to reach out to potential partners. Google lobbyists have made the rounds with legislators in Washington. Its engineers have made pilgrimages to Detroit and abroad. And its data experts have been talking with some of the big insurance companies. They're making clear tracks in a big push.A year after the Dodge commercial aired Levandowski showed up in Detroit as the keynote speaker at the SAE's annual shindig. He came to Motor City bearing an olive branch: the fruit of several years of intensive research for them to taste even take for themselves. Google wants to make available to the rest of the auto industry all of the building blocks that we ourselves use he said and then ticked off the goodies the Android operating system search voice social maps navigation even Chauffeur. Instead of rebuilding a whole operating system from scratch he said automakers should focus on making the user experience their own.No one talks about the actual terms of the deal negotiations with individual car companies were held behind closed doors but it shouldn't surprise anyone if Google is proposing to give away the software. For the car companies the real cost of implementing the technology would be in the specialized peripheral that Chauffeur needs to run: the lidar. The acronym stands for light detection and ranging and it works on the same principle that radar and sonar do but today's most advanced lidar is much more accurate generating up to 1.3 million voxels per second. (A voxel is like a pixel but represents a point in space instead of on a two-dimensional screen.) Group a million or so voxels together and you have a point-cloud: a 3-D model mapped at a 1:1 scale and accurate down to the centimeter. But at $75000 to $85000 each Google's lidar costs more than every other component in the self-driving car combined including the car itself.A grizzled maverick of an engineer named David Hall designed the lidar that Google uses. His company Velodyne makes a unit that packs 64 lasers in a turret that typically rotates at 600 rpm continuously strafing the landscape with 64 separate beams. For the autonomous vehicle I'm kind of the only thing that works Hall says.Industry scuttlebutt has it that Ford is giving Google the most serious consideration. Hall confirms that a major automaker recently summoned him to its headquarters to ask whether he could make a next-generation lidar a ruggedized standardized automotive component. The company wanted a design that it could hide (perhaps behind the windshield) that would wholesale for no more than $1000 and it wanted a prototype immediately. If it liked what it saw it promised to buy a thousand units in four years' time.It's a catch-22 a classic chicken-and-egg problem: Which will come first the $100-million lidar order from a car company? Or the $100-million lidar factory by Velodyne or another supplier? One hundred million dollars is an arbitrary figure. The point is that some company somewhere needs to make a massive investment. But who?Google to its credit shows no signs that it's allowing Detroit to slow it down. Even after returning from what must have been discouraging talks with manufacturers it has not deviated from the script: Self-driving cars should be achievable in five years. It takes more than five years to engineer a new car from the ground up. If Detroit started designing self-driving cars now around components that actually exist there's no way the technology could get to the showroom by 2017. Google is not a car manufacturer. Nor does it intend to be one Levandowski says. So what's the plan?I don't think we need to wait 10 years for the next model or body style to come out to build the technology he told the SAE audience. I'm looking forward to the aftermarket seeding this and starting the adoption by customers. In other words Google thinks a new generation of bot-rodders may kick things off.Google won't say anything more but since there's really only one place to turn for the all-important lidar I ask David Hall what he thinks. Hall has considered releasing a bolt-on self-driving system; he's even priced it out: $100000. It would be for people like my dad he says. They're not driving very well any more and they could afford it. However without reinventing Chauffeur and the super-high-resolution Google maps that go with it Hall doesn't see the point. He imagines talking to potential customers. What would you say he asks. â€Â°'Almost as good as Google's?'â€Â°  The other fight is the legal one. It too is filled with catch-22's. Hall described a PowerPoint presentation containing the automaker's analysis of self-driving-car technology. It was about 20 pages long he says and the last 10 pages were 'What's going to happen when we get sued?'â€Â° Detroit doesn't want to start making self-driving cars without legal clarity. And legal clarity will not arrive until self-driving cars test the law.In Smith's analysis the legal concept of driver goes back to an international agreement called the Geneva Convention on Road Traffic ratified by Congress in 1950. In those days many of the world's drivers still had reins and a whip instead of a wheel and pedals. They drove teams of horses herds of goats drifts of sheep. Animals Smith argues are autonomous. Thus in the eyes of the law an autonomous vehicle is arguably similar to a horse-drawn buggy. And under the Geneva Convention a basic legal requirement for drivers whether of animals or of cars is the same. The driver must have control. Who has control of a driverless car?For the autonomous vehicle that now drives Levandowski to work the answer (according to Smith) is logical: the person in the driver's seat. The Google car doesn't work without one as Chauffeur needs to be able to hand back the reins with 10 20 or maybe even 30 seconds' notice. In Smith's analysis the person behind the wheel satisfies the legal requirement of control but this theory hasn't been tested in court.And even if self-driving cars do not violate an international treaty myriad state laws imply that the driver must be human. New York's vehicle code for example directs that no person shall operate a motor vehicle without having at least one hand or in the case of a physically handicapped person at least one prosthetic device or aid on the steering mechanism at all times when the motor vehicle is in motion. Computers don't have hands. That is a problem. Some states prodded by Google lobbyists and looking to get ahead of the curve have made the cars explicitly legal. The doctrine assigns driver-hood to the person either in the driver's seat or the one who activates the self-driving function. Nevada was the first to adapt the principle into state law: Its DMV even designed special license plates for the vehicles (they have an infinity sign). California Florida and most recently the District of Columbia have followed suit.What's going to happen no matter what the law says is people are going to get sued Urmson the director of Google's self-driving-car project allows. But that doesn't mean the development of potentially lifesaving technology should be halted. There wasn't legal protection for the Wright brothers when they made that first plane he says. They made them they went out there and society eventually realized its value.  The oldest joke in the automotive world is the one about the loose nut between the gas pedal and the steering wheel. But 50 years after Ralph Nader's Unsafe at Any Speed sparked a revolution in safety engineering people are finally starting to take the joke seriously. There's one last hazard to engineer out of the modern car: human error which according to NHTSA is the certain cause of 81 percent of all car crashes.Cars kill roughly 32000 people a year in the U.S. and in 2010 Levandowski's life partner Stefanie Olsen was one of the 2.2 million per year injured. She was nine months pregnant at the time. My son's name is Alex and Alex almost was never born says Levandowski. He credits the safety features engineered into the car a Prius for saving Alex's life. But he muses that crash should have never happened. Technology he says should prevent oblivious drivers from causing harm.Self-driving-car boosters talk about a virtuous circle that starts when human hands leave the wheel. It's not just safety that improves. Computer control enables cars to drive behind one another so they travel as a virtual unit. Volvo has perfected a simple auto-drive system called platooning in which its cars autonomously follow a professional driver. It uses technology that's already built into every high-end Volvo sold today plus a communications system. The vehicle-to-vehicle communications standard soon to be announced by NHSTA would at least in theory enable all makes and models to platoon. And lidar could eliminate even the need for a lead driver.In our self-driving future not only would traffic jams become a thing of the past every stoplight would also be green.A 2012 IEEE study estimates that widespread adoption of autonomous-driving technology could increase highway capacity fivefold simply by packing traffic closer together. Peter Stone an artificial-intelligence expert at the University of Texas at Austin thinks that intersecting streams of automated traffic will essentially flow through one another controlled by a new piece of road infrastructure the computerized intersection manager. Average trip times across a typical city would be dramatically reduced. And once you have these capabilities says Stone all kinds of things become possible: dynamic lane reversals micro-tolling to reduce congestion autonomous-software agents negotiating the travel route with other agents on a moment-to-moment basis in order to optimize the entire network. In our self-driving future not only would traffic jams become a thing of the past every stoplight would also be green.In Volvo's real-world platooning tests drafting resulted in average fuel savings of 10 to 15 percent but that too is seen as the tip of the iceberg. Wayne Gerdes the father of hypermiling can nearly double the rated efficiency of cars using fuel-sipping techniques that could be incorporated into auto-driving software. Efficiency could double again as human error is squeezed out of the equation. Volvo's goal is to eliminate fatalities in models manufactured after 2020 and its newest cars already start driving themselves if they sense imminent danger either by steering back onto the roadway or braking in anticipation of a crash. Over time virtual bumpers could gradually replace the rubber-and-steel variety and automakers could eliminate roll cages returning the consequent weight savings as even better mileage. The EPA has a new mileage mandate for car manufacturers: They must achieve a fleet-wide average of 54.5 mpg by 2025; autonomous technology could help them get there faster.Mercedes offers Distronic Plus with Steering Assist as an option on the 2014 S-class luxury sedans. GM anticipates its Super Cruise system will debut later this decade. Both use a combination of radar and computer vision to center the vehicle in the lane and maintain a safe distance from the car in front of it. But the real engineering challenge is making sure the driver stays alert. All kinds of problems crop up in real-world testing says auto-drive consultant Brad Templeton who worked with Google on its self-driving-car project for two years. People start doing all kinds of things they shouldn't digging around in the backseat for example. It freaks everybody out.Level-two systems need constant human vigilance and oversight to guard against situations like a deer running into the road; the car must be able to hand back control with no warning. But the temptation for drivers is to simply zone out. So engineers have begun to design countermeasures. Mercedes for example requires two hands on the steering wheel at all times. Everyone's looking for ways to keep the driver engaged says Dan Flores a spokesman for GM. As the car gets more and more capable we want the driver to maintain driving expertise.Advocates like to say that there is no technical reason the new Mercedes needs hands on the wheel to steer through a turn. The problem is that even the best radar- and vision-based pedestrian-avoidance systems fail to see the proverbial child running into the road 1 or 2 percent of the time. Obviously 99 percent just isn't good enough; we need 99.99999 says Templeton. And what people don't seem to realize is that the difference between those two numbers is huge. It's not a one percent difference it's an orders of magnitude difference.Google is betting that established car manufacturers working with low-cost radar and camera components will never adequately bridge that gap. It's chosen a different technical path one that uses lidar to leapfrog level two altogether. It believes its level-three system will make cars safe enough for people to daydream while they're being driven to work. And it's not stopping there. NHTSA's former deputy director Ron Medford has just signed on as Google's director of safety for the self-driving-car project. Google's main focus and vision says Medford is for a level-four vehicle.Watching the video it reminded me of the old Test Driving video game on the PC a long time ago. lol --- In space no one can hear a tree fall in the forest.I'm not sure it will be that much fun to drive behind a self-driving car that just dropped off the human driver and is now looking for a parking space. It may drive very cautiously. If I see a parking space in the other aisle I'm having my wife jump out and run over there and stand in it until the self-driving car stops. Then I'll drive around and take the parking space. After all you can't be rude to a machine can you?www.facebook.com/dance2022Digital Auto Networks for Crash Elimination (DANCE) by 2022Assuming one day this technology in the future will be 'perfect and wonderful' WHO ultimately will take responsibility should an accident occurs?Um ya why couldn't someone just put 3 or 4 of the Microsoft Kinect devices put in various parts of the car to determine a 3D area? Could Kinect actually put the greedy Mr. Hall out of business? I think so. Let's get a crowdfund project started ASAP. Kinect device to replace expensive LIDAR system for self-driving vehicles. Google would buy it right now. :)Do not try and bend the spoon. That is impossible. Only try and realize the truth - there is no spoon.I think this would be an excellent discussion topic on our Autonomous Vehicle Community of Practice on LinkedIn. Please feel free to join in comment start a discussion etc. anytime at:http://www.linkedin.com/groups?gid=4860027&trk=hb_side_gDepends on the accident.If the crash involves a person actually driving they'll look to see if it was the person at fault or the car.I guess the car company would take fault if it was the driverless car.The first wave of the attack of the machines will be these autonomous cars running people down (-: cheers.The only way to get a Leap Forward with this technology is fully self driving to the point a 13 year old can jump in the car and say soccer practice and have it whiz him there and then go off to pick up Mom and then taxi them both back home.To that end Google needs to do what it did for 1G fiber. Take it to some place where it can control the environment. What they should do is buy or build a complete small town and engineer it for completely autonomous cars from the the ground up. Design all the streets and topology as you would assuming that your cars were never going to be driven by people and were also capable of driving themselves without any people inside them.Then let the real world simulation begin.@jabailo...Google is way ahead of you... http://en.wikipedia.org/wiki/Google_driverless_car ... they have logged a multitude of fully autonomous miles much more difficult than above and with a legally blind driver as the article at the link explains cheers.>we need 99.99999 If you goal is statistical perfection than you are guilty of manslaughter and should not be in a position of influence over the use of this technology. Lets not build helmets because they don't save lives that 0.00001% of the time or seat belts or any other life saving thing. Driverless cars should be aggressively rolled out as soon as they marginally surpass statistical human safety levels which they may have already done.The idea s good but they're awfully premature with their 'better than human ' claims. The Gmobiles have logged a lot of miles with restrictions on the areas driven. Also they periodically hand the vehicle back to the carbon based life form. I don't disagree with the approach I'm just saying that many things are yet to be proven. (How about sliding around on winter roads when the lidar is being pretty much blinded by the snow?). I would think that the best way to proceed would be to allow these vehicles to be driverless only in certain areas. When they had logged enough miles with (nearly) zero human intervention they could start tryng to prove their abilities in more complex areas. Eventually we'd probably get to the reverse -- human driving would be prohibited in congested areas. (Which would be OK -- but it wouldn't be good if the option of driving for pleasure was completely eliminated).My concept car ecologically friendly and low CO2 footprint will be an external combustion CNG fueled car made almost exclusively of wood and composites and no electrical system at all to shut down or detect. EMP *that Mr. Roboto.Historically it has taken 30 years in the automobile industry for a a new technology to become a production available technology. This has been true for things like electric starters windshield wipers hydraulic brakes four wheel brakes disk brakes automatic gear boxes ABS power steering electronic fuel injection light alloy wheels and a long list of others. For the self driving car it may take much longer because it is much more complicated and litigious.Self driving cars are getting a lot of press right now but there is something existing that will do everything a self driving car will ever do and a great deal more. It is a form of duel mode transportation which is powered by electricity from the road bed in 2 protected automated lanes and an access and exit lane which fits in the median of a four lane Interstate Highway. Any vehicle that will fit into a standard parking space and with very minor modifications can be carried by the system. Shipping containers can be transported from one terminal to another automatically without a tractor or driver. All units move at exactly the same speed and form a train. No units can be hit by another unit or anything within or outside the system. Congestion cannot occur. Entering and exit points would be as close together as those on the Interstate Highway. The system moves at a constant speed and any unit can enter and exit the system while the system moves at the constant speed. The units fly a little above the road bed and away from the guide elements. The system would not require new land and would not disturb any traffic around it. It would have a carrying capacity eight times that of a standard Interstate lane. It would be so much more efficient than the vehicles using it that the fees charged would not only save large amounts over the cost of the vehicles being driven on the highway that the system can be built and maintained without having outside money. The system could also help take care of maintaining the other parts of the Interstate. This can happen quickly without having to replace most of the cars being driven.Why doesn't Popular Science cover this kind of development which can solve almost all the problems of highway transportation without adding more prob;ems.I hope kids or anyone for that matter would be required to have a lot of practical driving experience prior to being permitted drive one of these robo-cars. Imagine the con being thrown back into your sixteen year old child's lap with only few seconds notice. Not to mention the other lives on the road.It [would] be nice to be able to just call your car to come pick you up when exiting the store with a boat-load of groceries in the pouring rain.Automated CarsThis is a good project and they seem to be working on it in a good way.Hopefully the ones programming the driving will have some driving skills. Center-of-the-Lane all the time makes for a jerky ride. The racing line is the smoothest.. It takes some fancy math and lots of experience to know the smoothest path and program that into a computer. Please don't make us all car sick with jerky steering.Traffic light timing is another good project. It is probably more efficient to time the traffic lights and reduce the number of stops than to put a regenerative braking system on every car and regain the energy typically lost from stopping. Hybrid systems are good for improving efficiency and have proven their value. Traffic light timing could give similar improvements in efficiency with much less complexity and cost. I have a plan for solving the traffic light timing problem. It can be tuned specifically for each city. It would be fun to have a job working on that.Thanks -TonyThis pipe dream of self-driving cars is very nice & all kind of romantic in an early 20th century sci fi way but for all practical purposes it will not happen. Sure the technology may be developed for extremely limited applications but unless the concept of liability changes significantly we will never see public streets filled with robo-cars. Regardless of how good the tech may be it will still break down from time to time. That means that there will still be accidents. Who is responsible when the AI core of one of these vehicles craters in the middle of the rush-hour commute and the now pilotless vehicle causes a multi-car pileup? So create them so that the driver can take over you say? HA! Not gonna happen because in order for the driver to assess the situation and gain control of the vehicle he/she would have been having to pay attention to /what the car is doing at all times/ (like you do when you're actually driving) which kinda negates the main point of having a self-driving car i.e. being able to focus on something other than driving. So who is responsible for the payout when the inevitable does happen? Is it the car manufacturer? Perhaps the company that wrote the self-drive software? You certainly can't hold the owner responsible... oh which also means that the business model for vehicle insurance would have to entirely change as well. Face it kiddos it is a fine idea but it simply isn't going to happen as long as someone has to pay when accidents happen. Auto manufacturers are not going to assume that responsibility.when the car ahead breaks hard?? I'll trust a self-driving car when you can get spell-check right.bike/train/bike commute beats any self driving car option. yes that would be bad short term for an economy based on consumption but changing the infrastructure to make a mesh of high speed trains should ease transition from 1-ton-metal-can (2 if you're in US) for 1 person to 20 tonnes for +100 people..3-4 years ago I saw a Nissan Altima driving itself with the driver snoozing in a reclined seat; I watched it in I-405 southbound through Seattle all the way from I-520 to I-90 (several miles) in traffic running from stop and go to a full 60 mph. One of the times that we were stopped I even took